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Abstract. In the context of optimization and cycles reduction for product design 

in industry, digital collaborative tools have a major impact, allowing an early 

stage integration of multidisciplinary challenges and oftentimes the search of 

global optimum rather than domain specific improvements. This paper presents 

a methodology for improving participants’ implication and performance during 

collaborative design sessions through virtual reality (VR) tools, thanks to inten-

tion detection through body language interpretation.  A prototype of the method-

ology is being implemented based on an existing VR aided design tool called 

DragonFly developed by Airbus. In what follows we will first discuss the choice 

of the different biological inputs for our purpose, and how to merge these multi-

modal inputs a meaningful way. Thus, we obtain a rich representation of the body 

language expression, suitable to recognize the actions wanted by the user and 

their related parameters. We will then show that this solution has been designed 

for fast training thanks to a majority of unsupervised training and existing pre-

trained models, and for fast evolution thanks to the modularity of the architecture. 

Keywords: Virtual Reality, Machine Learning, Body Language, Intent Detec-

tion, Computer-Aided Design. 

1 Introduction 

Products complexification and the need for shorter time to market through a reduction 

of design loops foster the development of methods and tools enhancing product visual-

ization and cross-disciplinary collaboration. Airbus has thus developed DragonFly – an 

internal virtual reality (VR) tool – to take advantage of an immersive environment at 

scale. This tool is primarily suitable for such architectural design tasks like space allo-

cation and design reviews. Although efforts have been made to improve the interface, 

many experts refuse to learn to use a new design tool often associated to hard-to-master 

interfaces. We aim at fostering the adoption of the software by decreasing related learn-

ing phases. We plan to infer the actions intended by the users thanks to the analysis of 

their body language while minimizing VR equipment intrusiveness. More precisely, 

due to the availability of different motion capture systems and due to the low equipment 

intrusiveness constraint, we focus in what follow on the language and posture analysis. 
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In this paper, we present a conceptual framework for a natural body language under-

standing specialized in the activities realized in DragonFly. Literature provides meth-

ods for inferences based on natural language and natural gesture separately [1], but also 

propose methods to synchronize and find relations between time series of different na-

tures [2] – e.g. audio and video. Literature finally propose empirical descriptions of 

high level statistical analysis of body language (gesture and voice) [3]. Our proposition 

fills the gap between language and posture analysis, thus presenting a rich representa-

tion of the body language of a person over time and taking into account relationships 

between both inputs. In a first approach, we make the hypothesis that the action in-

tended by a user can be inferred independently from any environmental variables and 

so that the information retrieved from the user body language is sufficient for this task. 

2 Related Work 

In this section, we discuss the different existing methods for body language understand-

ing and the biological variables chosen in literature. More precisely, we focus on the 

body language empirical analysis, on its links with design actions in a virtual reality 

environment and we will show that a simple statistical analysis based on high-level 

features is not sufficient. However, we will see how the addition of a temporal compo-

nent could help at eliciting simple user state of action in a context of pure gesture anal-

ysis. On the other hand, present how to handle speech through widely used “Natural 

Language Understanding” techniques but also how to identify entities – parameters of 

an action – in a sequence. Then, we tackle the multimodality of the input analyzing 

existing methods bringing together inputs of different natures. Finally we highlight ex-

isting solutions dealing with limited labelled datasets. 

2.1 Body Language Empiric Analysis 

 

Fig. 1. Gesture classification (Vuletic T. et al., 2019) 

Gestures are aimed at two purposes: manipulate, and communicate [4] (see Fig. 1). The 

first category includes the movements performed when interacting directly with a phys-

ical, virtual or imaginary object generally with our hands whereas the second one relates 

to information sharing. More precisely, in this classification, the speech-related ges-

tures are linked to communication; but the “modeling symbolic” gestures can carry 

meaningful element from a manipulative point of view when the speech itself carry 
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such a manipulative message such as “draw a ball this big” spacing hands to a precise 

distance from each other thus suggesting the size of the ball. Moreover, a Computer 

Aided Design (CAD) task can be naturally performed with gesture different ways (see 

Fig. 2) [3] and some gesture patterns can correspond to multiple actions. This puts em-

phasis on the need for additional information to identify the action. Nevertheless, we 

can observe that metrics about the symmetricity of the arm’s activity (not clearly de-

fined in literature) and also the hand posture often give characteristic distributions (see 

Fig. 2 for arm’s activity) for the different gesture patterns according to each action to 

be performed. This tends to show that these metrics are good discriminators for our 

purpose, even though they are not sufficient. Finally, the most relevant descriptors for 

hand posture are geometrical (articulation angle) and topological (pinch) [5].  

 

Fig. 2. Themes in manipulation groups (Khan S. and Tunçer B., 2019) 

Besides, the distinction between simple user states (for instance waiting for a drink 

or in our case manipulating an object) can be deduced from other parameters: head 

orientation, body trunk inclination and the relative position of the user from others [1]. 

More precisely, the trunk inclination appears to be correlated to the implication of the 

user and to his will to interact. Finally, the addition of voice to the gesture ease the 

understanding of the actions to be performed especially for non-tech users [3]. 
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2.2 Sequence Analysis 

As seen in sub section (2.1), the static analysis of video and audio inputs seems to be 

insufficient for a good action inference. Literature proposes methods to add a temporal 

component to this analysis. Let’s first consider sequence labelling, consisting of prop-

erties discrimination for each element of a sequence (for instance function identification 

for each word in a sentence), and then of sequence understanding which yields to a 

global property of the sequence (like the prediction of the evolution of a share). 

Sequence Labelling. A commonly used solution is a hidden Markov model (HMM) 

[1][6] which picks up in real time the most probable sequence of states in time accord-

ing to previously observed variables. This artificial intelligence (AI) model relies on a 

transition table showing the most likely transitions from one state to another, and an 

emission table depicting the likelihood of a specific input for a given state. The model 

then learns from a tagged dataset these probabilities by counting the different transitions 

and emissions. The issue with this model is that the function optimized during training 

is not the likelihood of a given sequence of labels given a particular sequence of inputs, 

but rather the likelihood to get both at the same time. A solution that outperforms HMM 

in most cases for discriminative tasks is called conditional random fields (CRF) [7]. 

The idea there is to assume a log-linear probability distribution for the likelihood of a 

given sequence of labels given a particular sequence of inputs with respect to observa-

tions. The model is then trained to maximize this likelihood by optimizing parameters 

of this model (weights and biases) instead of frequencies in the HMM. CRF are thus 

harder to train but give better predictions. Even though both technologies have been 

primarily made for discrete observations, it is possible to convert inputs into Gaussian 

probabilities and thus to deal with continuous observations [1][8]. 

Sequence Understanding. The idea here is to process the first element of the sequence 

and reuse this output as a part of the input for the next element [9], and so on until the 

end of the sequence. This design has been further improved with long-short term 

memory RNN (LSTM) [10] and gated recursive units (GRU) [11] thus keeping a longer 

track of the context given by the previous elements. Despite these improvements, these 

models suffer two flaws. Firstly, it remains hard to detect long term dependencies be-

tween elements [12]; secondly, sequence of inputs treatment cannot be parallelized due 

to the nested outputs for each new element computation. The current state of the art 

architecture for sequence understanding is based on the transformer architecture [13] 

initially developed for language tasks. This is a self-attention based auto-encoder [14] 

architecture that is to say that AI looks specifically for relations between each pairs of 

tokens. By construction, each interaction related to one token can be computed inde-

pendently from the others, thus enabling parallel computing. In fact, the position of the 

token has to be encoded because the model is permutation independent: the input is 

treated as an unordered set of inputs, thus allowing the detection of long-term depend-

encies. Thanks to the diversity of relation, transformers are used for high level image 

processing and transfer learning (pre-trained transformers [15]). The main limitation of 

this architecture is that it supports, by construction, a fixed maximum input sequence 

size and this size increase causes a quadratic growth of the computations. 
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2.3 Multimodality 

A shared representation mixing several modalities (e.g. image and text) has been 

first done by concatenating all the data of the different modalities into one large input 

vector, but has been shown to be inefficient and not suitable for capturing dependencies 

and relations between the different modalities [16]. This is why research then focused 

on various techniques for a more reliable unification of different modalities. The most 

recent studies on cross-modality representation usually imply the projection of each 

modality input into a same semantic (or latent) space [16][17][18]. This projection can 

be done after a preprocessing of the raw inputs [18] and it seems more suitable to project 

low and medium-level features of the input in order to have a better similarity recogni-

tion between the inputs. However, the literature presents usually methods for generative 

tasks or for  discriminative pairing tasks (e.g. associating text to a given image) that 

have not really been used for time constraint classification tasks. A model proposes to 

gather each modality in a same input vector where the nature of the modality is identi-

fied by a keyword before each new sequence [16]. 

2.4 Limited Labelled Dataset 

Dealing with limited datasets in machine learning is more and more made possible by 

pre-trained auto-encoders (see Fig. 3) [19], popularized by the transformer architecture 

[13]. Auto-encoders are pairs of models – an encoder and a decoder – that are usually 

trained to reproduce the input after condensing the data in a latent space. This unsuper-

vised approach is feature based: the models learn the principal key features of the data. 

The encoder learns the discriminant features contained in the data whereas the decoder 

learns the common features found in the dataset. Once trained, either the encoder is 

kept for discriminative tasks or the decoder is kept for generative tasks. The main ad-

vantage of this technique is that it does not require labelled data – the expected output 

being the input.  

 
Fig. 3. Principle of a simple auto-encoder (Joseph Rocca, 2019) 

Once a model is pre-trained, additional layers are added on top of it to be trained for 

the initial task – this phase is called “fine-tuning”. This special case of transfer learning 

[19] speeds up speeds this second phase up because the learning effort is focused on 

the final task, and not on the learning of contextual data. For instance, in natural lan-

guage processing, the pre-training learns the grammar and the semantics of the word 

whereas the fine tuning learns to classify a sentence. 
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3 Proposed Approach 

In this section, we describe our new approach tackling multimodal design intent detec-

tion. We first describe the conceptual framework, the general architecture and then we 

describe more precisely each component. In this paper we don’t tackle the translation 

of inferred actions into actual DragonFly commands. 

3.1 Conceptual Framework 

As a first approach, we propose the set of inputs described in Table 1. The proposed 

inputs contain all the information for the measures discussed in the literature review 

with additional information position-wise, so as to enable action parameters (e.g. a 

pointing direction) extraction. It allows also a clearer definition of such proposed meas-

urements like the symmetricity of the activity of the arms. This inputs selection has two 

objectives. Firstly we reduce the dimensionality of the problem by exposing only rele-

vant features to the model: doing so, it does not have to learn how to extract these lowest 

level features. Secondly, it helps understanding the model by making possible to see 

which input has been more active in a particular context, fostering the maintenance and 

further improvements for the model. 

Table 1. Input selection proposition 

Input type Device Measures 
Hand posture Leapmotion For each hand: Flat, Flat hold, Fist, Thumb up, 

Index, L, C, Pinch or Undefined. 

Upper body posture Kinect Azure Relative positions in 3D to the body referential* 

of neck, shoulders, elbows, hands and pelvis. 

Head orientation HTC Vive Pro Relative Euler angles of the head with respect to 

the body referential*. 

Speech HTC Vive Pro Sequence of words obtained through a speech 

recognizer. 

*: the sagittal plane is defined as the median plan between shoulders and the frontal plane 

contains the segment from left shoulder to right shoulder. 

The outputs of our models correspond to the most used elementary capabilities of Drag-

onFly. Several interviews with DragonFly users and experts, the observation of work 

sessions on the tool have drawn the following set of actions as our target classes: 

 Change position (pan and rotate) 

 Hide/unhide 

 Grab 

 Measure distance  

 Make a section 

 Select several objects 

 Select parent object of selected object 

 Take a picture 

 Draw a primitive shape (box or cylinder) 



W
or

ki
ng

 d
ra

ft
7 

3.2 General Architecture 

We propose a similar architecture to what we have seen in literature [18] but introduc-

ing specific features dealing with the asynchronous nature of the different inputs – the 

different devices don’t deliver new data neither at the same time neither nor at the same 

frequencies – but also adapt the method to classification tasks and not to similarity 

cross-modal pairing or to generative tasks. The general approach is described in Fig. 4. 

First of all, we define two modalities for our model: gesture and speech. We extract 

from these some low level features in the form of time series of one dimensional vector1 

and embed each token of each time series into a same dimensional space before being 

concatenated as seen in literature [1016]. This concatenation is than transformed into a 

rich and high level representation of these tokens with the full body language context. 

This representation is directly used for the action classification and each of the new rich 

features are concatenated to their corresponding low level features in order to identify 

the most relevant features through modality specific conditional random fields (CRF). 

Finally, a solver gathers the extracted actions and parameters to make a decision. 

 

Fig. 4. General architecture of the proposed solution (the last detected action and the solver 

described below are not represented) 

In addition, we take into account the non-random chaining of actions during a session 

as testified during the sessions observations and the interviews: we propose an addi-

tional input for the unified modality transformer encoding the previous action per-

formed by the user. This idea is also motivated by the results obtained in literature [1] 

using Hidden Markov Models (HMM). In fact, this implementation tends to mimic the 

behavior of a transition diagram by adding information about the previous state – in our 

case the states are the different possible actions (see 3.1) – to find the most probable 

following action. 

                                                           
1  The frequencies of gestures’ features and speeches’ ones are uncorrelated and thus may be 

completely different (see Shared Representation.). 
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3.3 Component Details 

Gesture Low Level Features. The low level representation of a user’s gesture is built 

by taking regular snapshots of a one dimensional posture vector to create a sequence of 

postures. The frequency of these snapshots may be fine-tuned but we can deduce its 

order of magnitude considering two criteria. First of all, the interval between snapshots 

must be sufficient to have a real change of the vector between two consecutive shots. 

We discuss below the update of this vector but it is directly dependent on the frequen-

cies of involved devices. The slowest device is the Kinect Azure with 30Hz. Moreover, 

we observe empirically that an action takes around 5s to be performed by a regular user 

– rounded to 10s to ensure a better context understanding; the size allocated in the 

shared representation transformer is in the order of 100 tokens. We can thus predict a 

10Hz frequency for this second estimation, giving us a pretty good estimation of the 

possible range of the snapping frequency: from 10 to 30Hz. 

The posture vector is obtained by the asynchronous concatenation of the different 

inputs described in Table 1. Each input is obtained as follows: the hands postures are 

presented as a one hot encoding vector – a vector filled with zeros with a one at the 

position of the corresponding class – which is obtained from Boolean operations on the 

geometric and topologic characteristics of each hand (the detailed operations are not 

presented in this paper) [5]; the relative positions of the upper body articulation are 

concatenated in a fixed order and all the dimensions are normalized by the pelvis-neck 

distance; the head Euler angles in radians are also normalized by a factor 
𝜋

4
. Each part 

of the vector updates the global posture vector at its device frequency. 

Speech Low Level Features. Once the sound has been captured by the HTC Vive Pro 

microphone, it goes through a voice recognizer (we use the built-in C# library Sys-

tem.Speech.Recognition) to obtain a list of strings. We then use a BERT pre-trained 

transformer [19] accessible online to get our low-level features for the voice input. 

Shared Representation. This part of the process runs in a separate thread. It creates a 

rich body language representation of the different low level features. First, the low-

level features are loaded and projected on a same dimensionality plane by an embed-

ding layer (the dimensionality is primarily set to the original dimension proposed in the 

transformer method [13] or 512x1 for each individual low-level feature).  

Then, as proposed by the literature, the different modality sequences are put together 

using keyword separators – for our purpose we define [GEST] and [SPCH] at the be-

ginning of each modality sequence, [PREV] at the beginning of the previous action 

embedding and [SEP] at the junction between two series. We define a minimum length 

for each modality. A standard adult communication being around 150 words per minute 

in English and a common action taking empirically around 5s, we propose a maximum 

number of speech-allocated tokens of at least 50 (or about 15s of normal speech), to 

capture more easily context dependencies and fast speeches. Similarly for gesture fea-

tures, considering a snap frequency (see above) of 20Hz, we propose to dedicate at least 

300 tokens to gesture features. Finally, we proposed the following input word consid-

ering a 512 long input sequence for the transformer: “GEST[432 gesture 

tokens]SEP|SPCH[74 speech tokens]SEP|PREV[previous action token]”. 
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The sequence described above is then transformed by a unified modal transformer 

[16] to reveal a rich cross-modality representation of each of the input features. More 

precisely, each input feature is projected on a same semantic plane. This transformer 

can be pre-trained an unsupervised manner using its auto-encoder form with data gath-

ered during real sessions. Indeed, the previous layer of the solution is already trained 

so we can gather words during various sessions before using them as a training dataset. 

The operation is repeated as soon as the following classification and parameter extrac-

tion are done, independently from the low level features update frequencies. 

Classification and Parameters Extraction. The previous representation is directly 

used by a classifier to infer the action. We propose to use a simple sparse linear shallow 

neural network trained on labelled data for fast supervised training. 

For the parameters extraction, we use residual connections as proposed in literature 

[18] by concatenating the low level features with their corresponding rich representa-

tion computed above. These augmented features go through conditional random fields 

trained with labelled data. The labels of the dataset correspond to the different natures 

of arguments of the different actions. The construction of this dataset needs discussions 

with the users, so as to identify which part of their body language expression at which 

moment determines the parameter – for instance a pointing finger can be the direction 

of an object: this posture is then inferred as an object parameter. 

Once the action and the parameters have been extracted, a solver uses this data along-

side the rich representation, so as to decide Dragonfly action is to be performed. It first 

decides if the user has finished to communicate his intent or not and then if there are 

missing parameters or conflicts. It finally pilots DragonFly accordingly.  

4 Conclusion and Perspectives 

This paper presents a method for architectural design intent recognition in VR yet to be 

implemented. This model does not take into account the virtual environment context 

and is not able to infer several intents at the same time. Nevertheless, it deals with the 

asynchrony of the input, and with the multimodality used for augmented representation 

while having a modular architecture for future improvements. 

A first prototype is currently under development and will be built incrementally 

alongside with the methodology presented in this paper. This prototype will have a 

limited vocabulary to test the relevance of our model and retrieve the missing order of 

magnitude and hyper-parameters of our current approach. We will also define the pre-

cise architecture of the solver. Finally, we would like to define relevant environmental 

variables to be added to our model to increase even further the F1-score of the model. 

We are also preparing a statistical analysis of user’s body language when performing 

design actions in DragonFly. The objectives are to build a reference to assess the recog-

nition performance of our solution, to validate the assumptions made on the biological 

variables we consider for our model and identifying confusing factors not highlighted 

by the literature. Moreover, it builds a first dataset for the training of our prototypes. 

Preliminary results show the necessity of having an assistant-like bot mainly because 

of the difficulty to speak naturally to a screen without expecting an answer. 
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