

WORLD ENGINEERING, SCIENCE & TECHNOLOGY CONGRESS International Conference on Future Trends in Smart Communities

BORNEO CONVENTION CENTRE KUCHING (BCCK), SARAWAK | 1-2 DEC 2022

ICFTSC[™]

Theme: Human Centric Technologies

General framework of geometric simplification for mitigating cybersickness

Ruding Lou¹, Frédéric Mérienne¹, Dominique Bechmann²

¹ Arts et Métiers Institute of Technology, LISPEN, Chalon-sur-Saône, France

² ICube, Université de Strasbourg, CNRS, France

01/12/2022

Context

• Virtual reality (VR)

Example of interaction :

Context

From simple visualization to immersion in VR

- 1:1 scale
- Stereoscopy
- Adapted POV
- Large FOV display

- Reduced scale
- Monoscopy
- Small FOV display

 Cut off from the real world

de Strasbourg

iCU3E

Scientific issue

Immersive visualization => visually induced self-motion

4

Physically statistic: Using VR input device to move in virtual environment

 \sim

Sensory conflict and cybersickness

Increase self-motion cues for inner ears

- Locomotion simulator [3]
 - Virtusphere [1]
 - **Omni-Directional Treadmill** [2]
 - Others

Limits

- Realism
- Equilibrium
- Volume, Cost
- etc.

de Strasbourg

6

Increase self-motion cues for inner ears

- Locomotion simulator
- Physiological stimulation
 - Galvanic vestibular stimulation [1, 2]
 - Proprioceptive vibration [3, 4]

Limits

- Efficiency,
- Intrusiveness,
- setup for personal use,
- etc.
- [1] Maeda et al (2005) Shaking the world: Galvanic vestibular stimulation
- [2] C. Groth et al (2022) Omnidirectional Galvanic Vestibular Stimulation in Virtual Reality
- [3] Plouzeau et al (2015) Effect of proprioceptive vibrations on simulator sickness during navigation task in virtual environment
- [4] Peng et al (2020) WalkingVibe: Reducing Virtual Reality Sickness and Improving Realism while Walking in VR using Unobtrusive Head-mounted Vibrotactile Feedback

Increase self-motion cues for inner ears

Reduce self-motion cues for eyes

- Virtual navigation restriction
 - Locomotion acceleration / speed control [1, 3]
 - Teleportation [◊]
 - Head motion: rotation lock [2]

Limits

- Difficult to ensure the navigation quality
 - [1] Argelaguet (2014) Adaptive navigation for virtual environments
 - [2] Kemeny et al (2017) New VR Navigation Techniques to Reduce Cybersickness
 - [3] Plouzeau et al. (2018) Using cybersickness indicators to adapt navigation in virtual reality

Increase self-motion cues for inner ears

Reduce self-motion cues for eyes

- Virtual locomotion restriction
- Visual rendering adaptation
 - Rendered images blurring [1]
 - Field of view (FOV) restriction [2, 3]
- Intruder in the visualization
 - Adding virtual nose [4]

Limits

- Difficult to ensure the immersion degree
 - [1] Budhiraja et al (2017) Rotation Blurring: Use of Artificial Blurring to Reduce Cybersickness in Virtual Reality
 - [2] Rogers et al (2017) Peripheral Visual Cues Contribute to the Perception of Object Movement During Self-Movement
 - [3] Al Zayer et al (2019) The Effect of Field-of-View Restriction on Sex Bias in VR Sickness and Spatial Navigation Performance
 - [4] Whittinghill et al (2015) Nasum virtualis: A simple technique for reducing simulator sickness

Reduce self-motion cues for eyes by geometric simplification of the virtual scene

Université

de Strasbourg

iCU3E

🔏 lispen

Arts Sciences et et Métiers

Reduce self-motion cues for eyes by geometric simplification of the virtual scene

[1] Ji et al (2004) Integrating a computational model of optical flow into the cybersickness dose value prediction model

de Strasbourg

Reduce self-motion cues for eyes by geometric simplification of the virtual scene

Projection of optic flow onto the virtual scene for segmentation

Scene geometry optimization (Optic flow vs Realism) **Original model** Simplified model li T merged ll T TI TI T removed Arts Sciences et Technologies et Métiers Université **∿lispen iCU3E**

Reduce self-motion cues for eyes by geometric simplification of the virtual scene

Results

Optic flow [1] analyzed is reduced in the peripheral FOV thanks to geometric simplification

[1] Ji et al (2004) Integrating a computational model of optical flow into the cybersickness dose value prediction model

Conclusion & perspectives

General framework of geometric simplification

- Simplification of high optic flow parts seen in the peripheral FOV
- Preservation of scene seen in the central FOV
- Adaptation of ratio $\frac{\text{peripheral FOV}}{\text{full FOV}}$ according to navigation parameters

Future works

- Automation of scene segmentation and simplification
- Game design and experimentation with participants
 - User tasks design and performance evaluation
 - Sickness evaluation using subjective questionnaires and bio-feedback
- Design of other geometric processing methods

QUEStions?

WORLD ENGINEERING, SCIENCE & TECHNOLOGY CONGRESS International Conference on Future Trends in Smart Communities

BORNEO CONVENTION CENTRE KUCHING (BCCK), SARAWAK | 1-2 DEC 2022

ICFTSC[™]

Theme: Human Centric Technologies

01/12/2022

General framework of geometric simplification for mitigating cybersickness

Thanks

ruding.lou@ensam.eu, frederic.merienne@ensam.eu,

<u>bechmann@unistra.fr</u>

¹ Arts et Métiers Institute of Technology, LISPEN, Chalon-sur-Saône, France

² ICube, Université de Strasbourg, CNRS, France

